			-P, atm.		
$C imes 10^{_4a}$	1	500	1000	1500	2000
0	133.2^{b}	135.0	135.3	134.5	133.0
5	116.3^{b}	118.7	120.3	120.3	119.6
10	108.7^{b}	111.6	113.3	113.8	113.4
20	99.7	103.3	105.4	106.2	106.3
100	75.2°	79.6	82.6	84.5	85.4
200	65.9^{c}	70.4	73.7	75.8	77.0

^aC is atmospheric pressure concentration in moles/liter. ^bC. J. Hallada and G. Atkinson, J. Am. Chem. Soc., 83, 3759 (1961). ^c Measured this experiment.

Table III: Degree of Association $(1 - \alpha)$ for Aqueous MnSO₄ at 25°

2000
0.046
0.079
29 0.119
71 0.255
32 0.314
2

 ^{a}C is atmospheric pressure concentration in moles/liter.

Table IV: Molal Dissociation Constant (K_m) and $\Delta \overline{V}^0$ for Aqueous MnSO₄ at 25°

		C. 8	tm. press. co	nen., M	
P, atm.	0.0005	0.001	0.002	0.01	0.02
1	0.0044	0.0044	0.0046	0.0052	0.0060
500	0.0048	0.0050	0.0053	0.0063	0.0073
1000	0.0059	0.0057	0.0062	0.0073	0.0086
1500	0.0066	0.0065	0.0069	0.0084	0.0099
2000	0.0073	0.0072	0.0077	0.0094	0.0111
		,	$\Delta \bar{V}^{0}$, cc./mole	a	
1	-7.4	-7.1	-8.0	-9.3	-10.0
2000	-5.3	-5.0	-4.8	-5.0	-5.0

 a $\Delta\,\overline{V}{}^0$ was calculated by a least-squares fit of log K to a quadratic curve.

Table V: Comparison of $K_m(P = 2000)/K_m(P = 1)$ for MgSO₄ and MnSO₄ Aqueous Solutions at 25°

C, M	$MgSO_4$	MnSO ₄
0.0005	1.9	1.7
0.001	1.8	1.6
0.002	1.7	1.7
0.01	1.8	1.8
0.02	1.7	1.9

It is seen that at atmospheric pressure the value of $\Delta \bar{V}^0$, as concentration decreases, approaches that predicted from the Fuoss theory, namely, -7.4 cc./mole. There appears to be a concentration dependence of $\Delta \bar{V}^0$ at atmospheric pressure but not at 2000 atm.

A comparison in Table V of the ratios of the equilibrium constants at 2000 and 1 atm. indicates that a

Table VI:	Comparison of $\Delta \overline{V}^0$ for MgSO ₄ and MnS	SO_4
Aqueous S	olutions at 25° and 1 Atm.	

	Δ V 0, cc./mole				
C, M	$MgSO_4$	$MnSO_4$			
0.0005	-8.5	-7.4			
0.001	-7.0	-7.1			
0.002	-7.0	-8.0			
0.01	-7.3	-9.3			
0.02	-6.9	-10.0			

Table VII: Cell Constants^a

—Cell constants a	t atm. press.—		endence of — onstant		
Concn., M	L_1	P, atm.	L_{p}^{*}		
0.0005	0.808	500	0.991		
0.001	0.811	1000	0:986		
0.002	0.812	1500	0.982		
0.01	0.824	2000	0.979		
0.02	0.829				

^{*a*} To find cell constant L_p at pressure *P* multiply atmospheric pressure value L_1 by L^*_p .

Table VIII : Copy of Original Conductivity Data Measured for Electrolytes at 25° in Aqueous Solutions (Teflon Cell without Glass Bar)

		P, atm				
	1	500	1000	1500	2000	1^a
0.02 M KCl, mmhos	3.338	3.484	3.582	3.639	3.670	3.322
MnSO ₄	3.118	3.436	3.681	3.868	4.008	3.104
K_2SO_4	5.769	6.046	6.245	6.381	6.456	5.742
MnCl ₂	4.941	5.197	5.374	5.482	5.539	4.934
0.01 M KCl, mmhos	1.715	1.790	1.840	1.871	1.886	1.709
MnSO ₄	1.812	1.977	2.101	2.196	2.264	1.802
0.002 M KCl, µmhos	359.7	375.0	385.4	391.6	394.8	358.7
MnSO ₄	486.7	519.9	543.8	560.3	571.5	484.5
K_2SO_4	684.4	712.6	732.3	744.6	751.4	681.2
MnCl ₂	575.6	602.6	620.3	631.5	637.1	573.2
0.001 M KCl, µmhos	181.8	189.9	195.0	198.2	199.9	181.3
MnSO ₄	267.5	283.4	295.0	302.6	307.6	266.5
0.0005 M KCl, µmhos	92.0	96.1	99.0	100.4	101.4	91.3
MnSO ₄	144.2	152.0	157.9	161.5	163.8	144.0
K_2SO_4	181.8	189.5	194.5	197.8	199.6	181.3
MnCl ₂	153.4	160.7	165.7	168.8	170.3	152.9
Water, µmhos	0.5	0.7	0.9	1.1	1.3	0.8
Series lead resistance, ohms	0.134	0.134	0.134	0.134	0.134	

^a The readings in this column were obtained the day after the pressure run was made.

different trend as a function of concentration exists between $MgSO_4$ and $MnSO_4$ solutions.

At atmospheric pressure and at the lower concentrations the values of $\Delta \bar{V}^0$ for both MnSO₄ and MgSO₄ agree with the value predicted by the Fuoss theory. For MnSO₄ there appears to be a dependence of $\Delta \bar{V}^0$ on pressure which was not observed for MgSO₄. Furthermore, there is a more noticeable concentration dependence of $\Delta \bar{V}^0$ at atmospheric pressure for MnSO₄ and in the opposite direction to that exhibited by MgSO₄, as shown in Table VI. The change in $\Delta \bar{V}^0$ is greater than would be accounted for assuming errors in Λ_p/Λ_1 to be as great as $\pm 0.5\%$.

The differences in the pressure behavior of these two salts may, in fact, be due to differences in the various ion-pair species which can be related to the differences in acoustic behavior. However, a multistate model cannot be deduced from conductivity data; these results can only provide a check for consistency of any multistate models which may be proposed.